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Topological aspects of chaotic scattering in higher dimensions
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We investigate the topological properties of the chaotic invariant set associated with the dynamics of
scattering systems with three or more degrees of freedom. We show that the separation of one degree of
freedom from the rest in the asymptotic regime, a common property in a large class of scattering models,
defines a gate which is a dynamical object with phase space separating invariant manifolds. The manifolds
form an invariant set causing singularities in the scattering process. The codimension one property of the
manifolds ensures that the fractal structure of the invariant set can be studied by scattering functions defined
over simple one-dimensional families of initial conditions as usually done in two-degree-of-freedom scattering
problems. It is found that the fractal dimension of the invariant set is not due to the gates but to interior
hyperbolic periodic orbits.
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I. INTRODUCTION three-body scattering problem as an illustrative example.

. L _— . This example bears some similarities to the example we used
Chaotic scattering in open Hamiltonian systems with twoj, e past for 2-dof scattering.

degrees of freedortdof) has become a well understood phe-
nomenon[1]. A central role is played in these processes by Il. DIMENSIONS, SEPARATRICES, AND GATES
the chaotic invariant setvhich consists of all the bounded .\ ¢ majority of studies concerning Hamiltonian dy-

orbits, i.e., those without the simple incoming and outgoingnamics is concerned with 2-dof systems, at least as far as
asymptotic motions characteristic of the system. Scatteringciya] systems and applications are concerned. The main rea-
trajectories starting close to the stable manifold of the invarison for that is of course the question of dimensionality. Since
ant set can show temporarily chaotic behavior in its vicinitythis is the main concern of this paper, let us discuss this point
before eventually escaping along the unstable manifold. Fon some detail. Two facts facilitate the study of 2-dof Hamil-
initial conditions exactly on a stable manifold branch, thetonians(see Table)l First, a Poincareection that is trans-
trajectories may even become asymptotically trapped byerse to the flow is a two-dimensional manifold, easily de-
bounded orbits; this leads to singularities on a fractal set iPicted on a sheet of paper or a computer screen. Second, and
the scattering functions. rr)aybel more important, invariant Obj.eCt.S that are codimen-
Our goal here is to try to extend the detailed comprehenrc'Ion 1in the energy !evel naturallly arise in 2-dof systems, as

. . . . stable/unstable manifolds of periodic orb{f&able ). These

sion that we have in 2 dof towards 3 dof. For dimensional

] . odimension 1 objects are especially important in scattering
reasons and topological reasons, the 3-dof case is vastiysiem: in the asymptotic region, they will determine the
more difficult than the 2-dof one. This is explained in detail fina| outcome of a scattering experiment. Indeed, these in-

in 290- 1. i th ension of 3.dof d variant objects induce a division in the asymptotic phase
ome steps towards the comprehension of 3-dof dynami-
cal systemspexist in the Iiteratufe whether for transgort in TABLE I. Dimensionalities of invariant objects arising in the
" e energy level of a Hamiltonian flow. The codimension of the object
gﬁgrerﬁl:la[lzi, sftoe rmalsé]enllsisQﬁgrgﬁtrllgigz)at;::ligﬁ]ihgtr ft?;se in the energy level is indicated in parentheses, when relevant. The
y = . P ph nature of the gate depends on the number of degrees of freedom,
space transport theory and chaotic scattering theldrare in see text
a sufficiently advanced stage by now. Thus, some steps may i
be safely taken in the direction of a dynamical and geometri-

cal analysis of chaotic scattering in higher dimensions, in the

Dimensions and codimensions

same way as has been undertaken for 20 years for 2-ddéfegrees of freedom 2 3 N
systems. Phase space 4 6 [\

In this paper, we show that in a large class of commorEnergy level 3 5 A-1
scattering problems the separation of one translational degré®incaresection 2 4 N-2
of freedom from the rest in the asymptotic region definesPeriodic orbit 1(2) 1(4) 1(2N-2)
invariant subspaces. These invariant subspaces atsyte 1(2) 3(2) 2N—-3(2)
dimension-wise large enough so that chaotic invariant setstaple/unstable manifolds 2 (1) 4 (1) 2N—2(1)

may be defined with the help of their invariant manifolds. of the gate
We will demonstrate these points using a simple planat
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Asymptotic region 2 case at hand, their invariant stable/unstable manifolds may
have a codimension 3 in the energy level, meaning that they
would cross the four-dimensional Poincaection as an ob-

Asymptotic region 3 ject of codimension 3a line) and of codimension 4+ 3 in

the energy level. By no means may this be considered as an

effective boundary.

Table | show that there exist invariant objects which are
candidates for generating separatrices, and hence possibly act
as gates. As has been pointed out by Wigdiih9] that there
may exist large invariant objects in phase space, whose
Asymptotic region 1 stable/unstable manifolds may act as separatrices. In the
three-dimensional configuration space of a three degrees of

Region 2 . . )

freedom system, such an object could be a two-dimensional

Region 3 invariant subset. It would be hyperbolic in the perpendicular
Reglon 1 (noninvariant direction. Consequently, both the stable and

unstable manifolds would be invariant manifolds, of codi-
mension 1 in the energy level. Intersection of these stable/
Pre-images unstable manifolds with Poincasection yields again a codi-
mension 1 object. This is very convenient, since a two-

FIG. 1. A very schematic view of the scattering event, With 4iension cut of the four-dimensional section will display
three channels displayed. In asymptotic region 1, three regions arg

displaved: thev correspond fo the three breimages of the thre enerically the stable or unstable manifolds as simple curves,

playec. they pond. yree preimages ot ven if these lines may be very complicated, due to the fold-
asymptotic regions. Any trajectory originating in preimagevi ing and stretching mechanism associated with the Hamil-
eventually be transported by the flow towards regiohhe regions 9 9

are separated by separatrices, which, in reality, are much mortémian flow. . . .
compligated. y sep 4 Also, stable/unstable manifolds, should intersect generi-

cally, yielding a codimension 2 invariant chaotic set. Finally,

such objects can act as gates to a scattering process, provided
Space between the different channels of the Scattering eveﬂheir |Ocation in phase Space makes |t possib'e_ We Sha”
That iS, the Hamiltonian flow connects the different Outgoingdescribe such gates in det@ec_ |\0, after having described
asymptotic regions to the incoming asymptotic regions. Theyyr simple mode(Sec. Ill). Some conclusion will be drawn
limit of those regions is given by the condimension 1 invari- afterwards, and an Appendix describes in detail the equations
ant objects; these manifolds act as effective boundéses  of motion, since these are not very well known outside of the
Fig. 1). chemical physics community.

Inspection of Table | shows that for a 2-dof system, codi-
mension 1 invariant manifolds naturally arise. They are the
stable and unstable manifolds associated with very well
known objects: periodic orbits and equilibrium points having
invariant stable and unstable manifolds. The relevant peri- A typical scattering problem appearing in many contexts
odic orbits are the unstable on@heir associated linearized is a single particle interacting with a two-body system; the
map have a pair of real eigenvallieghose invariant mani- most common examples are from chemical phy&ieactive
folds extend smoothly towards the asymptotic regions. Theollisions and celestial mechani¢planetary motioh Mod-
relevant equilibrium points are of the stable/unstable typeels of this type have been studied in several varieties, in-
(their linearized map have one pair of real eigenvalue andluding ones restricted to 2 dof. In fact, reactive collisions
one pair of purely imaginary eigenvalyeShe stable un- in collinear or T-shape configuratiori$,10] or the inter-
stable manifold may also extend smoothly towards theaction of satellites in coplanar circular orbiteHill's
asymptotic regions. Since these objeftse periodic orbit problem) [11] are well-known representatives of chaotic
and the equilibrium poinjsgive structure to the whole phase scattering. However, a more general treatment involving
space, they are callethe gatesof the scattering event. A more than 2 dof in these systems and similar ones is clearly
lengthy discussion of their role have been put forward in oumecessary.
earlier work, for 2-dof scatterinfs—8|. For this purpose, we have chosen a planar atom-diatom

Finally, it must be underlined that the stable/unstablecollision of total angular momentund=0 with pairwise
manifolds under discussion intersect generically, both being/lorse potentials between the atoms, at a total endtgy
of codimension 1. Thus, a chaotic invariant set is readilybelow the complete dissociation threshold so that scat-
found by forming these intersections, which appear as a fradering consists of an exchange reaction. There are three
tal set of points on a Poincasection. qualitatively different channels corresponding to which of

With three degrees of freedom, the nature of the problenthe three atoms escapes after the decay of the transient
changes. Periodic orbits, even if always present, are no moimplex. Since we are more interested in the general topo-
the main dynamical objects, as far as boundaries and invarlegical properties of chaotic scattering rather than in accurate
ant objects are concerned. Indeed, depending on the specifitcodeling of particular chemical reactions, we have chosen

Ill. A SIMPLE MODEL
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FIG. 2. (Color) Zero-kinetic energy surfaces in the abstract representatioB$d.4. Because of the mirror symmetry of the potential,
only thez=0 halves are shown. Trajectories must stay between the red and green surfaces OT¢mntours on the base afe=0 curves
for collinear configurations. The labels next to the exit channels give the color coding used in Fig. 3 for the outcome of the scattering process.

identical atomic masses and Morse potential parameters faround thez axis by =2#/3 correspond to symmetric
simplicity. T-shape configurations. For a given eneEgigelow the total

In a center-of-mass coordinate system, the total number afissociation thresholdE,,,=3, z is confined to a range
dof for this process is four, witte and J conserved. By [ — Zmax-Zmax, DUt X andy can be arbitrarily large. The three
choosing suitable new coordinates, the angle variable conjihannels corresponding to possible outcomes of the reaction
gate toJ can be separated from the other three which stillextend to infinity along the intersection lines of the T-shape
contain all the information on the relative distances of thepjanes with the collinear one. The boundaries of the three-
atoms; thus we obtain a reduced model with only three dofgimensjonal energy surface, defined iy-0, are plotted in
For our purposes, the most appropriate choice is an abstragly 2 as level surfaces in the abstragty(z) space for a
representation of the configuration by Cartesian coordinategpical scattering energy.
(x,y,2) based on hyperspherical coordinates widely used for ' rar from the origin, the escape channels have an

three-body problem§12—14. The new variables and their asymptotic axial symmetry due to the separation of the trans-
time derivatives can.then be ysec_zl to express the kinetic enational motion of the outgoing single atom from the bound
ergy K [13] and the interatomic distances,, ri3, andraz  rotation/vibration of the moleculéa two-dimensional Morse

[14]. The actual expressions are rather complicated and n@jscillatop. This observation provides us the key point con-
reproduced here for lack of space. We refer the interestegeming the topological properties of the system.

reader to the literature on these coordinate systems, espe-
cially the references given above. The Hamiltonian takes the

(dimensionlessform IV. THE GATE AND ITS INVARIANT SET

In scattering systems like ours that asymptotically sepa-
rate into a subsystem with— 1= 2 dof plus 1 translational
where Vy(r)=(1—e ")? is the Morse potential. The ex- dof, a two-dimensiona2D) invariant object naturally exists:
plicit Hamiltonian and the equations of motion can be foundit consists of the 2-dof subsystem plus the free particle rest-
in Egs.(60)—(66) of Ref.[13]. ing infinitely far away from it. In fact, it has been shown by

Important symmetries and special cases are reflected ifioda[15] that in a planar atom-diatom collision the dynam-
these coordinates. The potential is mirror symmetric withics of the molecule and the third atom at rest defines an
respect to the plane=0, containing collinear configurations, object in the four-dimensional Poincasection with three-
while the planey=0 and its two images obtained by rotation dimensional stable and unstable manifolds.

H(X,y,Z,px,py-pz):K+VM("12)+VM(V13)+VM(V23),(
1
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FIG. 3. (Colon Initial conditions from the 2D subspace of the Poincseetion colored according to the corresponding exit channels. The
boundary curves of single-color regions are the slices of the stable manifold of the gate object.

By definition, the intersection points of the stable and ds=2d,—D=2+25, 2)
unstable manifolds of an invariant object define an invariant
set for the dynamics. In our scattering model, the gate obwhereD =4 is the dimension of the Poincasection. This
jects in configuration space are two-dimensional sulisets set contains all the bounded orbits of the system and is re-
nuli) at the “end” of the outgoing channels. In the Poincare sponsible for the chaotic properties of the scattering.
section, such a gate appears as a two-dimensional, too. In the Following the approach of Chest al.[16], we represent
remaining two dimensions in its vicinity, one can draw athe stable and unstable manifolds and the invariant set on a
curve from each point of the gate so that initial conditions onplanar (two-dimensional cut of the four-dimensional Poin-
the curve will lead to asymptotic convergence to the orbitcaresection by choosing initial conditions with two fixed re-
started from the point on the gate. The stable manifold of thetrictions and two free parameters. Our Poincaegtion
gate is then the collection of these curves forming locally &or the triple Morse system is defined ly=0 (with v,>0)
three-dimensional object. while the restrictions in the initial conditions axg+z,=0

Because of the global stretching and folding generate@ndvg,+vq,=0. In Fig. 3, we plotted initial points in the
by the nonlinear dynamics of the system, this stablgzy,vg,) plane in colors depending on the exit channel
manifold also has a fractal structure in the directioneventually taken by the corresponding trajectoi(es Fig.
perpendicular to it, so globally it has a total dimension2). The most important point is that in this picture, all
dg=3+ ¢ with 0<<1 being the partial fractal dimension three colors form(locally) compact regions with smooth
in the perpendicular direction. Because of time reversaboundaries. The boundary of a single-colored region consists
symmetry, the unstable manifold must have the same dief trajectories with vanishing translational kinetic energy at
mension. Their intersections define an invariant set with dhe “end” of the channel, i.e., asymptotic to the correspond-
dimension ing gate object. In other words, the boundary curves of
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regions of a given color are just the planar sections ofThese singularities are the fingerprints of the fractal structure
the stable manifold of the gate closing the channel associf the stable manifold of the gate, so their fractal dimension
ated with that color. On the outer side of these curvesis justé.
smaller, differently colored regions can be found, accumulat- We have checked this point by plotting the scattering
ing on the boundaries in a fractal manner. Similar picturegime for various linear sets of initial conditions in our triple
have been presentdd 7] for the gravitational three-body Morse model. They all showed the typical singular behavior
problem. well known from two dof chaotic scattering examples. We
In fact, the stable manifold curves in Fig. 3 are an ex-also determined for the set of singularities tinecertainty
ample of Wada boundarid48], i.e., fractal boundary sets exponenta,, related to the(partia) fractal dimension as
where all three colors are present in any neighborhood 06=1-«, [23]. One can measure, by choosing pairs of
boundary points. It is worth noting that in chaotic scatteringinitial conditions with a separation of along the line: the
processes with more than two outgoing channels, Wadeatep(e) of pairs where the two orbits escape along different
boundaries are typicdl19,20, but such objects can also channels scales gf¢)~¢e“. We have obtained,=0.12,
appear, e.g., as physical boundaries between dyes of differewhich gives a fractal dimensio®=0.88 for the stable
color poured into open hydrodynamical flowR1]. It manifold of the gates. As in our earlier wofg], this result
must be also noted that these manifolds may have othdtolds only for an intermediatéalthough broay range of
types of topologies, if energy level boundaries have othescattering times, due to the fact that the dynamics is not fully
topologies and/or symmetrig®2]. It is not so much the hyperbolic.
properties of the boundaries that the very existance of re- It is worth noting that although we measured the fractal
gions of one color(basing that is of importance, on the dimension of the stable manifold of the gates, this scaling
physical point of view. Indeed, since the basins are of norbehavior cannot originate from the gates themselves since
zero measure, the result of actual experiments are not totalhey are only marginally unstable due to the behavior of the
unpredictable, but simply depend on which basin the initialMorse potential: The marginal instability of the gates
conditions fall. As basins exist at all scales, the characterictishould lead to an asymptotic fractal dimension value of 1.
behavior of chaotic scattering in two degrees of freedom isHowever, if our statistics is based on moderately long
maintained in three degrees of freedom, as boundaries @afcattering orbits, we can still observe a scaling region asso-
Wada type exist. ciated with an apparent fractal dimension which is lower
Due to the special symmetries of the section chosen fothan 1 as if there were only hyperbolic orbits in the system.
Fig. 3, the unstable manifold curves in that plane can be&n our model, the only hyperbolic orbits are the iniggree-
obtained by simply mirroring the stable manifold curves withbody) periodic orbits, so the observed scaling can only be
respect to the, axis. Then we can plot an approximation of produced by them. This indicates that they can dictate the
the gate invariant set by considering a color pixel as a crosffactal scaling properties of the invariant set as in two dof
section point of the stable and unstable manifold if both itselforoblems in spite of the fact that now the gate is not a peri-
and its mirror image on the other side of theaxis have at odic orbit.
least one neighbor cell of different color. The result is shown
on Fig. 4; the fractal nature of the plot is indicated by a
blowup. Since the invariant set is of dimensidgF 2+ 24, VI. CONCLUSIONS
eaf:h p(_)int in this plo_t represents a smooth twq-dimensional We have shown in a simple example that for a large
object in the total invariant set embedded in the four-cjass of 3-dof chaotic scattering systems, the asymptotic
dimensional Poincarmap. In other words, our plot captures geparation of a translational dof leads to gate objects with
Fhe fractal part of the gate invariant set; its fractal dimension.ggimension one invariant manifolds capable of controlling
is 26. the escape process. The intersections of these manifolds
form an invariant set with two smooth and two fractal direc-
tions in the four-dimensional Poincameap. The stable mani-
fold of the gate defines disjunct smooth regions for
One of the convenient characteristics of two dof chaoticasymptotic initial conditions containing topological different
scattering is that its scaling properties can be studied througtnajectories. Thus, fractal properties of the scattering can be
one-dimensional sets of initial conditions. However, thiscaptured in one-dimensional cuts of phase space as in 2-dof
property may or may not be true in general hyperbolic chasystems.
otic scattering with 3 dof, depending on the fractal dimen- We have also shown that the inner periodic orbits can
sion of the invariant set and its stable manifpld]. In this  affect scaling properties of the gate invariant set. In this con-
paper, we provided evidence that in three dof scattering sydext, it is important to notice that periodic orbits do not have
tems with the asymptotic separation of 1 dof, the feasibilitycodimension one invariant manifolds. This leaves open the
of the one-dimensional description is restored. The reasoguestion whether another invariant set defined as the closure
for this is that the crossing of three-dimensional stable manief the set of all three-body periodic orbits would coincide
folds with a line in a four-dimensional space is a genericwith the gate invariant séthis is true for 2-dof problemsif
property. Thus, typically any one-dimensional family of ini- yes, then the locally two-dimensional manifolds of inner pe-
tial conditions would yield scattering function plots with a riodic orbits must conspire to form smooth surfaces along the
fractal set of singularities, as in 2-dof chaotic scattering.gate manifolds; otherwise we arrive at the equally nontrivial

V. LINEAR SECTIONS AND SCALING PROPERTIES
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conclusion that these periodic orbits are nowhere dense ican be similar too. An obvious example is the full spatial
the gate invariant set. Further efforts to clarify this questiondynamics of a three-body collision that can be reduced to
are underway. four nontrivial degrees of freedom.

Although we treated only one example in three dof cha-
ofic scattering, our fmd_mgs can be gene_rallze(_j to any Hamll- APPENDIX A: COORDINATES AND HAMILTONIANS
tonian problem described by a four-dimensional Poincare
map with a suitable two-dimensional invariant subspace. An- While the equations of motion have been published at
other possible extension is considering systems with moreeveral instances, we recall here the form of the Hamiltonian
than 3 dof: if there is an asymptotic separation of only oneequations, as well as the connection between physical inter-
dof from the rest, then, in principle, gate objects can be departicle distances and abstract Cartesian coordinates. While
fined in an analogous way, and the topological consequencekis derivation could also be performed for a nonzero total
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angular momentund (see Ref[24]), we prefer keeping) ef=0,
=0 for simplicity. Everything can be found in the literature,
see, for example Ref§12] and[13]. me
€®=+2 arctan— =27/3,
A.1 Coordinates H

In order to properly define the Hamiltonian, one has to go c mg
through a series of transformations, from natural interparticle e=-2 arctan; =—27/3.
distances, to Jacobi mass-scaled coordinates and eventually
to the Cartesian coordinates used in this paper. Let us call thgy,op,
three particlesA, B, C, and again for simplicity, let their
masses beny g c=1, distanceRR, 5. The plane formed by g
the three atomdl is invariant. Letu be the reduced mass Xi_xj:_p[l_l_sinasin(d,_ék)] 7
(M =3, total masg V2
B /mAmBmC_ V3 or else
m M 3"
k

We define next the mass reduction factor Xi—XjZE[PZJF py cose*— px sine]? (8)

, Ma ma|  2v3 .

dA=7 1- ™M= 3 These coordinates are extremely useful for two reasons.

Firstly, all three channels are on the same footing, and the
Let x, be the coordinates in thd plane of atomA. The two ~ Shape of the asymptotic part is simyiee Fig. 2 Secondly,
Jacobi coordinates are as next section shows, the Hamiltonian is particularly simple
and economic, fod=0.

ra=dx (Xg—Xc), ()
A.2 EQUATION OF MOTION
_ McXc+ MpXg . . . .
RaF dA( Xp— W) (4 The equation of motion in the Cartesian coordinates have

been derived several times. If total angular momentum is

It must be underlined that the Jacobi coordinates are ndiero 0=0), then they take a particularly simple from. Lt

“democratic,” since atomA is singled out. This will be 0e the kinetic energy.

taken care of with the help of the hyperspherical coordinates.
The spherical hyperradiysis defined as the overall size

of the system. Everything has &nndex, but we leave it out

for the ease of the notation:

1
T=;<p2—3p§>, 9

where
p’=r2+R2 (5
. . . p2= p2+ p2+ p2
The shape of th@BC triangle is described by two anglés x Py o R
¢ 1
Ir|2—|R|?=p? sin 6 cosg, p§=l7(xpx+ypy+zpz)2_ (10
2r-R=p?singsing, (6)  Hence, the Hamilton equation take the following form (
) =X,Y,2):
2|rOR| = p* cosé.
. . 1
Fromp, 6, ¢, we may construct Cartesian coordinates, z, 5= —(4ps—3sW)
defined as usually s 11
3W Vv D
X=psinf cosg, ps=7(ps—SW)—£y
y=psindsing, with
Z=p COS6. B Ssp
There is an easy connection between these Cartesian coordi- B p2 ’
nates and the original interatomic distances. In order to find
this, we define the three so-called kinematic angles This defines completely the dynamics fb# 0.
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