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Topological aspects of chaotic scattering in higher dimensions
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Institute for Theoretical Physics, Eo¨tvös University Pf. 32, H-1518 Budapest, Hungary

L. Wiesenfeld
Laboratoire de Spectrome´trie Physique, Universite´ Joseph-Fourier-Grenoble, Boiˆte Postale 87, F-38402 Saint-Martin-d’He`res Cedex,

France
~Received 5 January 2000; published 17 April 2001!

We investigate the topological properties of the chaotic invariant set associated with the dynamics of
scattering systems with three or more degrees of freedom. We show that the separation of one degree of
freedom from the rest in the asymptotic regime, a common property in a large class of scattering models,
defines a gate which is a dynamical object with phase space separating invariant manifolds. The manifolds
form an invariant set causing singularities in the scattering process. The codimension one property of the
manifolds ensures that the fractal structure of the invariant set can be studied by scattering functions defined
over simple one-dimensional families of initial conditions as usually done in two-degree-of-freedom scattering
problems. It is found that the fractal dimension of the invariant set is not due to the gates but to interior
hyperbolic periodic orbits.
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I. INTRODUCTION

Chaotic scattering in open Hamiltonian systems with t
degrees of freedom~dof! has become a well understood ph
nomenon@1#. A central role is played in these processes
the chaotic invariant setwhich consists of all the bounde
orbits, i.e., those without the simple incoming and outgo
asymptotic motions characteristic of the system. Scatte
trajectories starting close to the stable manifold of the inv
ant set can show temporarily chaotic behavior in its vicin
before eventually escaping along the unstable manifold.
initial conditions exactly on a stable manifold branch, t
trajectories may even become asymptotically trapped
bounded orbits; this leads to singularities on a fractal se
the scattering functions.

Our goal here is to try to extend the detailed compreh
sion that we have in 2 dof towards 3 dof. For dimensio
reasons and topological reasons, the 3-dof case is va
more difficult than the 2-dof one. This is explained in det
in Sec. II.

Some steps towards the comprehension of 3-dof dyna
cal systems exist in the literature, whether for transpor
general @2#, for systems nearby integrability@3#, or for
chemical systems@4,5#. It is the authors’ opinion that phas
space transport theory and chaotic scattering theory@1# are in
a sufficiently advanced stage by now. Thus, some steps
be safely taken in the direction of a dynamical and geome
cal analysis of chaotic scattering in higher dimensions, in
same way as has been undertaken for 20 years for 2
systems.

In this paper, we show that in a large class of comm
scattering problems the separation of one translational de
of freedom from the rest in the asymptotic region defin
invariant subspaces. These invariant subspaces
dimension-wise large enough so that chaotic invariant
may be defined with the help of their invariant manifold
We will demonstrate these points using a simple pla
1063-651X/2001/63~5!/056207~8!/$20.00 63 0562
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three-body scattering problem as an illustrative examp
This example bears some similarities to the example we u
in the past for 2-dof scattering.

II. DIMENSIONS, SEPARATRICES, AND GATES

The vast majority of studies concerning Hamiltonian d
namics is concerned with 2-dof systems, at least as fa
actual systems and applications are concerned. The main
son for that is of course the question of dimensionality. Sin
this is the main concern of this paper, let us discuss this p
in some detail. Two facts facilitate the study of 2-dof Ham
tonians~see Table I!. First, a Poincare´ section that is trans-
verse to the flow is a two-dimensional manifold, easily d
picted on a sheet of paper or a computer screen. Second
maybe more important, invariant objects that are codim
sion 1 in the energy level naturally arise in 2-dof systems
stable/unstable manifolds of periodic orbits~Table I!. These
codimension 1 objects are especially important in scatte
system: in the asymptotic region, they will determine t
final outcome of a scattering experiment. Indeed, these
variant objects induce a division in the asymptotic pha

TABLE I. Dimensionalities of invariant objects arising in th
energy level of a Hamiltonian flow. The codimension of the obje
in the energy level is indicated in parentheses, when relevant.
nature of the gate depends on the number of degrees of free
see text.

Dimensions and codimensions

Degrees of freedom 2 3 N
Phase space 4 6 2N
Energy level 3 5 2N21
Poincare´ section 2 4 2N22
Periodic orbit 1~2! 1 ~4! 1(2N22)
Gate 1~2! 3 ~2! 2N23(2)
Stable/unstable manifolds
of the gate

2 ~1! 4 ~1! 2N22(1)
©2001 The American Physical Society07-1
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space between the different channels of the scattering ev
That is, the Hamiltonian flow connects the different outgoi
asymptotic regions to the incoming asymptotic regions. T
limit of those regions is given by the condimension 1 inva
ant objects; these manifolds act as effective boundaries~see
Fig. 1!.

Inspection of Table I shows that for a 2-dof system, co
mension 1 invariant manifolds naturally arise. They are
stable and unstable manifolds associated with very w
known objects: periodic orbits and equilibrium points havi
invariant stable and unstable manifolds. The relevant p
odic orbits are the unstable ones~their associated linearize
map have a pair of real eigenvalues!, whose invariant mani-
folds extend smoothly towards the asymptotic regions. T
relevant equilibrium points are of the stable/unstable ty
~their linearized map have one pair of real eigenvalue
one pair of purely imaginary eigenvalues!. The stable un-
stable manifold may also extend smoothly towards
asymptotic regions. Since these objects~the periodic orbit
and the equilibrium points! give structure to the whole phas
space, they are calledthe gatesof the scattering event. A
lengthy discussion of their role have been put forward in
earlier work, for 2-dof scattering@6–8#.

Finally, it must be underlined that the stable/unsta
manifolds under discussion intersect generically, both be
of codimension 1. Thus, a chaotic invariant set is read
found by forming these intersections, which appear as a f
tal set of points on a Poincare´ section.

With three degrees of freedom, the nature of the prob
changes. Periodic orbits, even if always present, are no m
the main dynamical objects, as far as boundaries and inv
ant objects are concerned. Indeed, depending on the spe

FIG. 1. A very schematic view of the scattering event, w
three channels displayed. In asymptotic region 1, three regions
displayed: they correspond to the three preimages of the t
asymptotic regions. Any trajectory originating in preimagei will
eventually be transported by the flow towards regioni. The regions
are separated by separatrices, which, in reality, are much m
complicated.
05620
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case at hand, their invariant stable/unstable manifolds m
have a codimension 3 in the energy level, meaning that t
would cross the four-dimensional Poincare´ section as an ob-
ject of codimension 3~a line! and of codimension 113 in
the energy level. By no means may this be considered a
effective boundary.

Table I show that there exist invariant objects which a
candidates for generating separatrices, and hence possib
as gates. As has been pointed out by Wiggins@2,9# that there
may exist large invariant objects in phase space, wh
stable/unstable manifolds may act as separatrices. In
three-dimensional configuration space of a three degree
freedom system, such an object could be a two-dimensio
invariant subset. It would be hyperbolic in the perpendicu
~noninvariant! direction. Consequently, both the stable a
unstable manifolds would be invariant manifolds, of cod
mension 1 in the energy level. Intersection of these sta
unstable manifolds with Poincare´ section yields again a codi
mension 1 object. This is very convenient, since a tw
dimension cut of the four-dimensional section will displa
generically the stable or unstable manifolds as simple cur
even if these lines may be very complicated, due to the fo
ing and stretching mechanism associated with the Ham
tonian flow.

Also, stable/unstable manifolds, should intersect gen
cally, yielding a codimension 2 invariant chaotic set. Final
such objects can act as gates to a scattering process, pro
their location in phase space makes it possible. We s
describe such gates in detail~Sec. IV!, after having described
our simple model~Sec. III!. Some conclusion will be drawn
afterwards, and an Appendix describes in detail the equat
of motion, since these are not very well known outside of
chemical physics community.

III. A SIMPLE MODEL

A typical scattering problem appearing in many conte
is a single particle interacting with a two-body system; t
most common examples are from chemical physics~reactive
collisions! and celestial mechanics~planetary motion!. Mod-
els of this type have been studied in several varieties,
cluding ones restricted to 2 dof. In fact, reactive collisio
in collinear or T-shape configurations@6,10# or the inter-
action of satellites in coplanar circular orbits~Hill’s
problem! @11# are well-known representatives of chaot
scattering. However, a more general treatment involv
more than 2 dof in these systems and similar ones is cle
necessary.

For this purpose, we have chosen a planar atom-dia
collision of total angular momentumJ50 with pairwise
Morse potentials between the atoms, at a total energE
below the complete dissociation threshold so that sc
tering consists of an exchange reaction. There are th
qualitatively different channels corresponding to which
the three atoms escapes after the decay of the tran
complex. Since we are more interested in the general to
logical properties of chaotic scattering rather than in accu
modeling of particular chemical reactions, we have cho
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FIG. 2. ~Color! Zero-kinetic energy surfaces in the abstract representation forE52.4. Because of the mirror symmetry of the potenti
only thez>0 halves are shown. Trajectories must stay between the red and green surfaces. Thez50 contours on the base areK50 curves
for collinear configurations. The labels next to the exit channels give the color coding used in Fig. 3 for the outcome of the scattering
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identical atomic masses and Morse potential parameters
simplicity.

In a center-of-mass coordinate system, the total numbe
dof for this process is four, withE and J conserved. By
choosing suitable new coordinates, the angle variable co
gate toJ can be separated from the other three which s
contain all the information on the relative distances of
atoms; thus we obtain a reduced model with only three d
For our purposes, the most appropriate choice is an abs
representation of the configuration by Cartesian coordin
(x,y,z) based on hyperspherical coordinates widely used
three-body problems@12–14#. The new variables and the
time derivatives can then be used to express the kinetic
ergy K @13# and the interatomic distancesr 12, r 13, and r 23
@14#. The actual expressions are rather complicated and
reproduced here for lack of space. We refer the interes
reader to the literature on these coordinate systems, e
cially the references given above. The Hamiltonian takes
~dimensionless! form

H~x,y,z,px ,py ,pz!5K1VM~r 12!1VM~r 13!1VM~r 23!,
~1!

where VM(r )5(12e2r)2 is the Morse potential. The ex
plicit Hamiltonian and the equations of motion can be fou
in Eqs.~60!–~66! of Ref. @13#.

Important symmetries and special cases are reflecte
these coordinates. The potential is mirror symmetric w
respect to the planez50, containing collinear configurations
while the planey50 and its two images obtained by rotatio
05620
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around the z axis by 62p/3 correspond to symmetric
T-shape configurations. For a given energyE below the total
dissociation thresholdEtot53, z is confined to a range
@2zmax,zmax#, but x andy can be arbitrarily large. The thre
channels corresponding to possible outcomes of the reac
extend to infinity along the intersection lines of the T-sha
planes with the collinear one. The boundaries of the thr
dimensional energy surface, defined byK50, are plotted in
Fig. 2 as level surfaces in the abstract (x,y,z) space for a
typical scattering energy.

Far from the origin, the escape channels have
asymptotic axial symmetry due to the separation of the tra
lational motion of the outgoing single atom from the bou
rotation/vibration of the molecule~a two-dimensional Morse
oscillator!. This observation provides us the key point co
cerning the topological properties of the system.

IV. THE GATE AND ITS INVARIANT SET

In scattering systems like ours that asymptotically se
rate into a subsystem withn2152 dof plus 1 translationa
dof, a two-dimensional~2D! invariant object naturally exists
it consists of the 2-dof subsystem plus the free particle r
ing infinitely far away from it. In fact, it has been shown b
Toda@15# that in a planar atom-diatom collision the dynam
ics of the molecule and the third atom at rest defines
object in the four-dimensional Poincare´ section with three-
dimensional stable and unstable manifolds.
7-3
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FIG. 3. ~Color! Initial conditions from the 2D subspace of the Poincare´ section colored according to the corresponding exit channels.
boundary curves of single-color regions are the slices of the stable manifold of the gate object.
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By definition, the intersection points of the stable a
unstable manifolds of an invariant object define an invari
set for the dynamics. In our scattering model, the gate
jects in configuration space are two-dimensional subsets~an-
nuli! at the ‘‘end’’ of the outgoing channels. In the Poinca´
section, such a gate appears as a two-dimensional, too. I
remaining two dimensions in its vicinity, one can draw
curve from each point of the gate so that initial conditions
the curve will lead to asymptotic convergence to the or
started from the point on the gate. The stable manifold of
gate is then the collection of these curves forming locall
three-dimensional object.

Because of the global stretching and folding genera
by the nonlinear dynamics of the system, this sta
manifold also has a fractal structure in the directi
perpendicular to it, so globally it has a total dimensi
dg531d with 0,d,1 being the partial fractal dimensio
in the perpendicular direction. Because of time rever
symmetry, the unstable manifold must have the same
mension. Their intersections define an invariant set wit
dimension
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ds52dg2D5212d, ~2!

whereD54 is the dimension of the Poincare´ section. This
set contains all the bounded orbits of the system and is
sponsible for the chaotic properties of the scattering.

Following the approach of Chenet al. @16#, we represent
the stable and unstable manifolds and the invariant set o
planar ~two-dimensional! cut of the four-dimensional Poin
carésection by choosing initial conditions with two fixed re
strictions and two free parameters. Our Poincare´ section
for the triple Morse system is defined byy50 ~with vy.0!
while the restrictions in the initial conditions arex01z050
and v0x1v0z50. In Fig. 3, we plotted initial points in the
(z0 ,v0z) plane in colors depending on the exit chann
eventually taken by the corresponding trajectories~cf. Fig.
2!. The most important point is that in this picture, a
three colors form~locally! compact regions with smooth
boundaries. The boundary of a single-colored region cons
of trajectories with vanishing translational kinetic energy
the ‘‘end’’ of the channel, i.e., asymptotic to the correspon
ing gate object. In other words, the boundary curves
7-4
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TOPOLOGICAL ASPECTS OF CHAOTIC SCATTERING . . . PHYSICAL REVIEW E63 056207
regions of a given color are just the planar sections
the stable manifold of the gate closing the channel ass
ated with that color. On the outer side of these curv
smaller, differently colored regions can be found, accumu
ing on the boundaries in a fractal manner. Similar pictu
have been presented@17# for the gravitational three-body
problem.

In fact, the stable manifold curves in Fig. 3 are an e
ample of Wada boundaries@18#, i.e., fractal boundary set
where all three colors are present in any neighborhood
boundary points. It is worth noting that in chaotic scatteri
processes with more than two outgoing channels, W
boundaries are typical@19,20#, but such objects can als
appear, e.g., as physical boundaries between dyes of diffe
color poured into open hydrodynamical flows@21#. It
must be also noted that these manifolds may have o
types of topologies, if energy level boundaries have ot
topologies and/or symmetries@22#. It is not so much the
properties of the boundaries that the very existance of
gions of one color~basins! that is of importance, on the
physical point of view. Indeed, since the basins are of n
zero measure, the result of actual experiments are not to
unpredictable, but simply depend on which basin the ini
conditions fall. As basins exist at all scales, the characteri
behavior of chaotic scattering in two degrees of freedom
maintained in three degrees of freedom, as boundarie
Wada type exist.

Due to the special symmetries of the section chosen
Fig. 3, the unstable manifold curves in that plane can
obtained by simply mirroring the stable manifold curves w
respect to thez0 axis. Then we can plot an approximation
the gate invariant set by considering a color pixel as a cr
section point of the stable and unstable manifold if both its
and its mirror image on the other side of thez0 axis have at
least one neighbor cell of different color. The result is sho
on Fig. 4; the fractal nature of the plot is indicated by
blowup. Since the invariant set is of dimensionds5212d,
each point in this plot represents a smooth two-dimensio
object in the total invariant set embedded in the fo
dimensional Poincare´ map. In other words, our plot capture
the fractal part of the gate invariant set; its fractal dimens
is 2d.

V. LINEAR SECTIONS AND SCALING PROPERTIES

One of the convenient characteristics of two dof chao
scattering is that its scaling properties can be studied thro
one-dimensional sets of initial conditions. However, th
property may or may not be true in general hyperbolic c
otic scattering with 3 dof, depending on the fractal dime
sion of the invariant set and its stable manifold@16#. In this
paper, we provided evidence that in three dof scattering
tems with the asymptotic separation of 1 dof, the feasibi
of the one-dimensional description is restored. The rea
for this is that the crossing of three-dimensional stable ma
folds with a line in a four-dimensional space is a gene
property. Thus, typically any one-dimensional family of in
tial conditions would yield scattering function plots with
fractal set of singularities, as in 2-dof chaotic scatteri
05620
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These singularities are the fingerprints of the fractal struct
of the stable manifold of the gate, so their fractal dimens
is just d.

We have checked this point by plotting the scatteri
time for various linear sets of initial conditions in our trip
Morse model. They all showed the typical singular behav
well known from two dof chaotic scattering examples. W
also determined for the set of singularities theuncertainty
exponentau , related to the~partial! fractal dimension as
d512au @23#. One can measureau by choosing pairs of
initial conditions with a separation of« along the line: the
ratep(«) of pairs where the two orbits escape along differe
channels scales asp(«);«au. We have obtainedau50.12,
which gives a fractal dimensiond50.88 for the stable
manifold of the gates. As in our earlier work@6#, this result
holds only for an intermediate~although broad! range of
scattering times, due to the fact that the dynamics is not fu
hyperbolic.

It is worth noting that although we measured the frac
dimension of the stable manifold of the gates, this scal
behavior cannot originate from the gates themselves s
they are only marginally unstable due to the behavior of
Morse potential: The marginal instability of the gat
should lead to an asymptotic fractal dimension value of
However, if our statistics is based on moderately lo
scattering orbits, we can still observe a scaling region as
ciated with an apparent fractal dimension which is low
than 1 as if there were only hyperbolic orbits in the syste
In our model, the only hyperbolic orbits are the inner~three-
body! periodic orbits, so the observed scaling can only
produced by them. This indicates that they can dictate
fractal scaling properties of the invariant set as in two d
problems in spite of the fact that now the gate is not a p
odic orbit.

VI. CONCLUSIONS

We have shown in a simple example that for a lar
class of 3-dof chaotic scattering systems, the asympt
separation of a translational dof leads to gate objects w
codimension one invariant manifolds capable of controlli
the escape process. The intersections of these manif
form an invariant set with two smooth and two fractal dire
tions in the four-dimensional Poincare´ map. The stable mani
fold of the gate defines disjunct smooth regions
asymptotic initial conditions containing topological differe
trajectories. Thus, fractal properties of the scattering can
captured in one-dimensional cuts of phase space as in 2
systems.

We have also shown that the inner periodic orbits c
affect scaling properties of the gate invariant set. In this c
text, it is important to notice that periodic orbits do not ha
codimension one invariant manifolds. This leaves open
question whether another invariant set defined as the clo
of the set of all three-body periodic orbits would coincid
with the gate invariant set~this is true for 2-dof problems!. If
yes, then the locally two-dimensional manifolds of inner p
riodic orbits must conspire to form smooth surfaces along
gate manifolds; otherwise we arrive at the equally nontriv
7-5
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FIG. 4. Approximation of the
planar section of the gate invarian
set~a!. The fractal structure of the
picture is indicated by the blowup
~b! of a small region looking ho-
mogeneous at a lower resolution
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conclusion that these periodic orbits are nowhere dens
the gate invariant set. Further efforts to clarify this quest
are underway.

Although we treated only one example in three dof ch
otic scattering, our findings can be generalized to any Ham
tonian problem described by a four-dimensional Poinc´
map with a suitable two-dimensional invariant subspace.
other possible extension is considering systems with m
than 3 dof: if there is an asymptotic separation of only o
dof from the rest, then, in principle, gate objects can be
fined in an analogous way, and the topological conseque
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can be similar too. An obvious example is the full spat
dynamics of a three-body collision that can be reduced
four nontrivial degrees of freedom.

APPENDIX A: COORDINATES AND HAMILTONIANS

While the equations of motion have been published
several instances, we recall here the form of the Hamilton
equations, as well as the connection between physical in
particle distances and abstract Cartesian coordinates. W
this derivation could also be performed for a nonzero to
7-6
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angular momentumJ ~see Ref.@24#!, we prefer keepingJ
50 for simplicity. Everything can be found in the literatur
see, for example Refs.@12# and @13#.

A.1 Coordinates

In order to properly define the Hamiltonian, one has to
through a series of transformations, from natural interpart
distances, to Jacobi mass-scaled coordinates and even
to the Cartesian coordinates used in this paper. Let us cal
three particlesA, B, C, and again for simplicity, let their
masses bemA,B,C51, distancesRA,B . The plane formed by
the three atomsP is invariant. Letm be the reduced mas
(M53, total mass!:

m5AmAmBmC

M
5
)

3
.

We define next the mass reduction factor

dA
25

mA

m S 12
mA

M D5
2)

3
.

Let xA be the coordinates in theP plane of atomA. The two
Jacobi coordinates are

rA5dA
21~xB2xC!, ~3!

RA7dAS xA2
mCxC1mBxB

mB1mC
D . ~4!

It must be underlined that the Jacobi coordinates are
‘‘democratic,’’ since atomA is singled out. This will be
taken care of with the help of the hyperspherical coordina

The spherical hyperradiusr is defined as the overall siz
of the system. Everything has anA index, but we leave it out
for the ease of the notation:

r25r 21R2. ~5!

The shape of theABC triangle is described by two anglesu,
f.

ur u22uRu25r2 sinu cosf,

2r "R5r2 sinu sinf, ~6!

2ur∧Ru5r2 cosu.

Fromr, u, f, we may construct Cartesian coordinatesx,y,z,
defined as usually

x5r sinu cosf,

y5r sinu sinf,

z5r cosu.

There is an easy connection between these Cartesian co
nates and the original interatomic distances. In order to
this, we define the three so-called kinematic angles
05620
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eA50,

eB512 arctan
mC

m
52p/3,

eC522 arctan
mB

m
522p/3.

Then

xi2xj5
dkr

&
@11sinu sin~f2ek!# ~7!

or else

xi2xj5
dk

&
@r21ry cosek2rx sinek#1/2 ~8!

These coordinates are extremely useful for two reaso
Firstly, all three channels are on the same footing, and
shape of the asymptotic part is simple~see Fig. 2! Secondly,
as next section shows, the Hamiltonian is particularly sim
and economic, forJ50.

A.2 EQUATION OF MOTION

The equation of motion in the Cartesian coordinates h
been derived several times. If total angular momentum
zero (J50), then they take a particularly simple from. LetT
be the kinetic energy.

T5
1

m
~p223pr

2!, ~9!

where

p25px
21py

21pz
2,

pr
25

1

r2 ~xpx1ypy1zpz!
2. ~10!

Hence, the Hamilton equation take the following forms
5x,y,z):

H ṡ5
1

m
~4rs23sW!

ṗs5
3W

m
~ps2sW!2

]V

]s
,

~11!

with

W5
(sps

r2 ,

This defines completely the dynamics forJ50.
7-7
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